Reloj

miércoles, 11 de marzo de 2015

CRISPR/Cas is all the rage—and getting more precise and efficient.

Una reciente revisión:

CRISPR (clustered, regularly interspaced, short palindromic repeats) is named for particular DNA loci that are found in many archaea and bacteria. CRISPR works with associated nucleases, including Cas9, to protect the cells from viral infection by inserting short snippets of viral DNA into the CRISPR cassette. By combining the Cas9 nuclease with a short guide RNA that’s custom-designed to bind a specific target, CRISPR/Cas can easily edit any gene you want. Just in the past year, for example, it has allowed researchers to cure a rare liver disease in mice, to excise HIV-inserted genes from human immune cells, and to block HIV from entering blood stem cells. CRISPR/Cas is easier than the other nuclease-based editing technologies, says John Schimenti of Cornell University; scientists are basically a reagent catalog and a round of PCR away from having everything they need to utilize CRISPR.

Enlace

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.