Reloj

jueves, 3 de diciembre de 2015

Complete nitrification by a single microorganism (Comammox)

Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 1890, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.

In situ detection of Nitrospira and their ammonia-oxidizing capacity.

a, Co-aggregation of Nitrospira and Brocadia in the enrichment. Cells are stained by FISH with probes for all bacteria (EUB338mix, blue), and specific for Nitrospira (Ntspa712, green, resulting in cyan) and anammox bacteria (Amx820, red, resulting in magenta). b, AMO labelling by FTCP (green). Nitrospira was counterstained by FISH (probes Ntspa662 (blue) and Ntspa476 (red), resulting in white). c, Ammonium-dependent CO2 fixation by Nitrospira shown by FISH-MAR. Silver grain deposition (black) above cell clusters indicates 14CO2 incorporation. Nitrospira was stained by FISH (probes Ntspa476 (red) and Ntspa662 (blue), resulting in magenta). Images in b and c are representative of two individual experiments, with three (b) or two (c) technical replicates each. Scale bars in all panels represent 10 μm.

Enlace al trabajo original

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.