Reloj

lunes, 4 de abril de 2016

Design and synthesis of a minimal bacterial genome

We used whole-genome design and complete chemical synthesis to minimize the 1079kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell. Improved transposon mutagenesis methods revealed a class of quasi-essential genes that are needed for robust growth, explaining the failure of our initial design. Three cycles of design, synthesis, and testing, with retention of quasi-essential genes, produced JCVI-syn3.0 (531 kilobase pairs, 473 genes), which has a genome smaller than that of any autonomously replicating cell found in nature. JCVI-syn3.0 retains almost all genes involved in the synthesis and processing of macromolecules. Unexpectedly, it also contains 149 genes with unknown biological functions. JCVI-syn3.0 is a versatile platform for investigating the core functions of life and for exploring whole-genome design.

Cite this article as C. A. Hutchison III et al., Science 351, aad6253 (2016). DOI: 10.1126/science.aad6253

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.